Optimal Clock Period Clustering for Sequential
Circuits with Retiming*

Arvind K. Karandikar
FM5 171
Intel Corporation
Folsom, CA 95630

Abstract

In this paper we consider the problem of clustering se-
guential circuits subject to a bound on the area of edch clus-
ter, with the objective of minimizing clock period. ” Cur-
rent algorithms address combinational circuits only, and
treat a sequential circuit as a special case, by removing the
Rip-flops (FFs) and clustering the remaining combinational
logic.- This approuch segments a.circuit and assumes the
positions of the FFs are fizred. The positions of FFs are
in fact dynamic, because of retiming. As a resull, current
algorithms can only consider a small portion of the avail-
able solution space. In this paper, we present a clustering
algorithm that does not remove the FFs, It also considers
the effect of retiming. The algorithm can produce clusters
ing solutions with optimal clock periods under the unit delay
model. For the general delay model, it ¢an produce cluster-
ing solutions with ¢lock periods provably close fo minimum.

1 Introduction

Circuit partitioning/clustering is an important aspect of
VLSI design [1, 2]. It consists of dividing a circuit into parts,
each of which can be implemented as a separate component
{e.g., a chip) that satisfies several design constraints. One
such constraint is the area of the component. The limited
area of a component forces the designer to lay out a circuit
on several components. Since crossing components incurs
relatively large delay, such a partitioning could greatly de-
grade the performance of a design if not done properly.

There has been a large amount of work done in the area
of circuit partitioning and clustering [3]-[13]." The classical
objective of partitioning is to minimize the cut-size, i.e., the
number of nets spanning two or more parts.

‘We econsider cirenit clustering subject to-a bound on the
area of each component, with possible replication of nodes,
i.e., a gate may be assigned to more than one component.
We refer to each such component as a cluster, and to the
problem as the circuit clustering problem. Our objective is
to minimize the clock period of the clustered circuit.

Previous work has mainly focused on combinational cir-
cuits for which effective heuristics and optimal algorithms
have been proposed [14, 15, 16]. However, most circuits

* *The work was partially supported by a Design Automation
Scholarship Award. Research of C.L. Liu was partially supported
by the NSF under grant MIP-9612184,

1063-6404/97 $10.00 © 1997 IEEE

Peichen Pan
Dept. of ECE
Clarkson University

Potsdam, NY 13699
akarandi@pcocd2.intel.com panp@sun.soe.clarkson.edu

C. L. Liu
Dept. of CS
University of Illinois at U.-C.
Urbana, IL 61801
linel@cs.uine.edu

in practice are sequential, Clustering algorithms for com-
binational circuits can be applied to sequential circuits, by
clustering the combinational logic between FFs as was done
in the past [14]. In other words, the FFs in a sequential cir-
cuit are simply réemoved to obtain a combinational network.
Then the combinational network is partitioned/clustered.
Finally, the FFs are placed back, as indicated in Fig. 1.

cluster the

combiaiorl L o FFs bk o 15
network

- Figure 1: Conventional clustering approach.

For sequential circuits, there is a functionality-preserving
transformation known as retiming [17]. Retiming allows a
designer to move FFs around within a circuit. The conven-
tional approach greatly restricts the solution space that can
be explored, since it does not consider different FF configu-
rations that can be derived using retiming, It also segments
a circuit into independent pieces when removing the FFs.

Ignoring the effect of FFs while trying to optimally clus-
ter the combinational logic of a sequential circuit, as the
conventional approach does, may not result in the best so-
lution for the sequential circuit. Consider the circuit shown
in Fig. 2(a). Assuming the delay of each gate is'1, the
inter-cluster delay is 2, and cach cluster can accommodate 3
gates, after clustering the combinational portion optimally,
we obtain the solution shown in Fig. 2(b). This solution
has a clock period of 8. Retiming can only reduce the clock
period to 7, due to the 7 units of delay on the combinational
path from % to o. '

Figure 2: Clustering and retiming.

On the other hand, consider the clustering solution
shown in Fig. 2(c), which is NOT an optimal clustering

of the combinational logic. This solution, however has a
clock period of 3, when retiming is applied to it, as shown
in Fig. 2(d).

We propose a sequential clustering approach which does
not break a circuit by removing FFs. The approach also
takes into account the effect of retiming. We then present
an efficient clustering algorithm based on the new approach.
The algorithm produces a clustering solution with the min-
imum clock period under the unit delay model. For the
general delay model, it can produce a clustering solution
with a clock period provably close to minimum.

We point out that there have been efforts to combine
retiming with the classical bi-partitioning problem [18, 19].
The resulting problem is obviously NP-complete. Our prob-
lem is different in nature. In fact, under the assumption
that delay values are constants, the algorithm proposed in
this paper has polynomial time complexity.

The rest of this paper is organized as follows. Section
2 contains the problem description. In Section 3, we in-
troduce the strong clustering problem. We will solve this
problem and then turn its solution into a solution to the
clustering problem. An optimal algorithm to the strong
clustering problem is described in Section 4. We present
some experimental results in Section 5, and conclude this
paper in Section 6.

2 Problem statement

We represent a circuit as a directed graph. A node in
the graph represents either a primary input (PI), primary
output (PO) or a gate, and an edge u = v represents an
interconnection from node % to node v. An edge ¢ has a
weight, w(e), which denotes the number of FF's on the inter-
connection. A node v has an area and a delay® associated
with it. The clock period ¢ of a circuit is the maximum
delay on the combinational paths (paths without FFs) in
the circuit.

Retiming a node by a value i means removing ¢ FFs from
each fan-out edge, and in the same time adding ¢ FFs to
each fan-in edge of the node. In general, all nodes except
Pls and POs can be retimed collectively (referred to as a
retiming of the circuit). A retiming r can be represented by
a mapping from the nodes to integers, where r{v) denotes
the retiming value for node v. Note that if v is a PI or PO,
r(v) = 0. After applying retiming r, the weight of edge
4 — v becomes w(e) + r(v) ~ r(u).

Given a sequential circuit, a clustered circuit (of the
given circuit) is an equivalent circuit formed by legal clus-
ters. A (legal) cluster is a subcircuit of the given one and
has a total area at most M which is a given parameter.
The clustered circuit may contain more than one copy of a
node in the initial circuit and the same is true for edges.
In other words, logic may be replicated in forming the clus-
tered circuit. Retiming is also allowed in our formulation
to consider the whole solution space. It should be noted
that a node in a clustered circuit may differ from the node
in the original circuit in clock cycles due to retiming.

In a clustered circuit, an edge from a node outside a
cluster to a node inside the cluster incurs an inter-cluster

1In this paper, we assume delay values are integers.

delay D which, as M, is a given parameter. The clustering
problem addressed in this paper is to find a clustered circuit
with minimum clock period. Without loss of generality, we
assume the Pls and POs are not clustered and no inter-
cluster delay is incurred on edges involving them.

In the description above, the underlying delay model is
usually called the general delay model as the delay values of
the gates can be arbitrary. When all gate delays are zero
and D = 1, we have the so-called unit-delay model [14].

In practice, the clock period is usually given and the ob-
jective is to find a clustered circuit with the target clock
period. This leads to the decision version of the cluster-
ing problem: Given a sequential circuit, and a target clock
period ¢, find an equivalent clustered circuit with a clock
period of ¢, if such a circuit ezists. Of course, if we can
solve the decision problem, we can easily find a clustered
circuit with the minimum clock period if it is so desired, by
carrying out binary search on the target clock period.

To consider the effect of retiming during clustering, we
generalize the important concept of l-values introduced in
[20] and use l-value as an indirect way to consider retiming.
For this we introduce a second weight w;(e) for each edge
u — v. w(e) is defined to be —@-w(e)+d(v), where d(v) is
the propagation delay of v. The l-value of a node is simply
the mazimum weight of the paths from the Pls to the node,
using the w; weight®.

Finally, we list a few more definitions: We use N to
denote the circuit to be clustered. For a node v in N, we
use §(u) to denote the delay incurred on edges starting at
u and entering another cluster, so it is zero if 4 is a PI, or
D if otherwise. A(u,v) for two nodes u and v denotes the
weight of the longest path from « to v in N, using the w;
weight.

3 The strong clustering problem

Dealing directly with clock periods during clustering
proves to be difficult since the clustered circuit is not formed
yet. In this section, we introduce the strong clustering prob-
lem whose objective is stated in terms of l-values. Our ap-
proach to the clustering problem is to solve the strong clus-
tering problem and then turn its solution into a solution to
the clustering problem.

Problem 1 (Strong Clustering Problem) Given a non-
negative integer ¢, find an clustered circuit for N such that
no gate is retimed in the clustered circuit and the l-values
of the POs are less than or equal to ¢.

There is a close tie between the strong clustering problem
and the the clustering problem, as stated in the following
result. (All results are stated without proofs due to space
limitation.)

Theorem 1 If there is no solution to the strong clustering
problem, then there is no clustered circuit with a clock period
of ¢. If, on the other hand, S is a solution to the strong
clustering problem, S can be retimed to a clock period less
than ¢ plus the mazimum of D and the gate delays in S.

21f we divide the l-values by ¢, they form a special continuous
retiming proposed in [21].

As a result of Theorem 1, instead of directly solving the
original clustering problem, we finda solution te the strong
clustering problem, then retime :that-solution to obtain a
solution to the clustering problem: We .next present an
optimal algorithm for the strong clustering problem.

4 An optimal algorithm for the strong
clustering problem

The algorithm: has two phases. . 'In .the first phase;, for
each' node in- N a label and a corresponding cluster are
computed. The label we want to compute 1s simply the min-
itmum l-value of the node in all clustered circuits that do. not
involve retiming, Consequently, if the is a' PO with a label
valne larger than ¢, thestrong clustering problem does not
have a solution and the algorithm stops. If the labels of the
-POs_are all less-than or equal to ¢; the algorithm goes to
the second phase to generate a solution to the strong clus-
tering problem, by-assembling the clusters-computed in the
first phase. In this section, we first describe the two phases.
Then we-analyze the time complexity of the algorithm.

4.1 ~ Compiuting the labels

Due to the presence of loops, there are cyclic dependen-
cies among the labels. The procedure for computing the
labels maintains a lower bound on the value of each label
and successively tightens the bound. -

Initially, the bounds for all nodes are set to -oo except for
the PIs, whose bounds are always zero. In general, a certain
number of iterations are needed. We use B to denote the
number of iterations. For now, we assume B is large enough
so that either all lower bounds settle down or one of the
'POs is found to have a lower bound]ﬁrger than ¢. Later,
we will present an estimate for B. If the lower bound for
a PO is found exceeding ¢, we know there is no solution
to the strong clustering problem, In this case, the labeling
procedure terminates with a return value FAILURE. Fig. 3
shows the overall structure of the labeling procedure, where
TIGHTENBOUND is the routine that tightens the bound for
a node. Each time TiGHTENBOUND is called, it returns a
new lower bound and an associated legal cluster.

We now introduce the procedure TIGHTENBOUND. To
make sure the lower bounds approach the labels, we mini-
mize the new lower bound for each node. Consider a node v.
For each node u in N, we calculate a value-I’(u) as follows :

@) = 1)+ A)+ (), o)

where I(u) is the current lower bound for node u.

If w is an input to a cluster at v, then the new bound for
v is at least I’(«). Thus, we set the new lower bound to be
the value given by the following formula: '

min (max{l'(u) | uis an input to cy). (2)

¢, a cluster at v

Obviously, the new bound is equal to one of the !’ values.
To find the !’ value, we sort the I’ values of all nodes in N
into a list and do a binary search on the list. The main step
1s, then, solving the following problem:

Problem 2 Given an integer L, determine whether there
is a legal cluster at v -such that the I' value of each input to
the cluster i3 at most L.

124

- LaBEL(N, ¢)

for each v in the circuit N
if (vis a PI) then l(v) =0
else I(v) = -o00
for i = 1to B do // B, number of iterations
changed = FALSE
for each v in N
{Inew, Crew) = TIGHTENBOUND(v)
if (vis a PO and lney > ¢) then
return FAILURE // no solution
if (lnew > (v)) then C
I(U) = In;w
changed = TRUE ~
C('U) = Cm?w
if (changed = FALSE) then
return SUCCESS

_'Figure 3: The labeling procedure.

To solve Problem 2, we form a cluster C, 1 at'node v as
follows. All nodes having an !’ value less than or equal to

-L~are removed from N and C, z is composed of all nodes,

that still have a path to v. Intuitively, Cyv,i consists of all
gates that must be inside:the same cluster. .

Lemma 1 Problem 2 has a positive answer. iff C, 1 13 a
legal cluster and does not containa PIL.

_Based on Lemma 1, we can do a binary scarch on the list
of I values to determine the new lower bound for ». Fig. 4
summartzes the procedure TIGHTENBOUND

TiIGHTENBOUND(v)
calculate I'(u) for each node u according to Eq. (1)
_sort all I’ values in increasing order Li, Lo, ..., Lt

low=1, high =1
while (low < high) do
mid = (low + high)/2
remove each node u with !'(v) < Lnig
form cluster Cu 1 .
if (area of C,,1, > M or C,, contains a PI) then
low =mid + low
else
high = mid
‘ re,turn, (Llow, Cv,L;ow)

Figure 4: Tighten the lower bound for one node.

 We now use the ciicuit in Fig. 5 to illustrate the labeling
procedure. For this example, the cluster area, inter-cluster
delay and target clock period are assumed to be 2 units,and

the area and the delay of each gate are assumed to be one

unit. “The table in"Fig. 5 shows the all-pairs matrix A for
the circuit.

Initially, I(z) =0, I(a) = l(b) = 1(c) = 1(0) =-00. Suppose
we tighten the lower bounds for a, b, ¢ in this order.. After

Figure 6: Final clusters.

the second iteration of the for loop in LABEL, the bounds
become {(1) = 0, I(a) = l(c) = 1, I(b) = 2, I(¢) = 0. Now
consider the third iteration.

For node a :

I'(i) = I(i) + A(i, a) + 6(1) =0+14+0=1;
(b) = 1(8) + A(b,a) + 6(8) = 24+ (1) 2= 3;
Plc) = 1(c) + Dlc,a) + 6(c) = 1+ (~2) +2 = 1.

The new bound for a is still 1, and the corresponding cluster
is {a,b}, as shown in Fig. 6(a).
For node & :

V'E)=1(6)+AGB)+6(i))=0+0+0=0;
P(a) =1a)+ D+ Aa,b)+8(a) =1+ (-1)+2=12;
'ie)=lc)+ D+ Ale,b) +6(c) =1+ (-1)+2=2.

The new bound for b is still 2, and the corresponding cluster
is {b}, as shown in Fig. 6(b}).
For node ¢ :

F(i) = 1) + AG, &) +66) = 0+ (=1) + 0 = —1;
U'(a) =1l(a) + Aa,c)+ 8(a) =14+ (-2)+2=1;
V') =1b)+Abe) +8(d)=2+(-1)+2=3.

The new bound for c is still 1, and the corresponding
cluster is {b,c}, as shown in Fig. 6(c).

For node o, I(0) = I(b) — pw(b,0) = 0. Note that since
each PO forms a cluster by itself, its bound is always that of
the gate that generates the output, plus the w; weight of the
edge to the PO. Since no further tightening is encountered,
the labeling procedure comes to a halt.

4.2 Generating a clustered circuit

After the successful completion of the labeling proce-
dure, we obtain for each node, a label and a corresponding
cluster. In this phase of the algorithm, we construct a so-
lution for the strong clustering problem. This is done by

125

Figure 7: (a) Initial clustered circuit (b) the retimed
one.

connecting the clusters together. If node u is an input to
the cluster at node v, the output of the cluster at u is con-
nected to each node that u is supposed to be connected to in
the cluster at v, and the number of FFs on each connection
is kept the same as that on the connection in N. In gen-
eral, some clusters are redundant in that their outputs have
no paths to the POs. After all connections are made, we
can remove the redundant clusters by tracing the clustered
circuit backwards from the POs, and deleting clusters not
encountered. Let the resulting circuit be S. For example,
Fig. 7(a) shows the solntion for the circuit in Fig. 5 formed
using the clusters in Fig. 6.

The following result states the correctness of the algo-
rithm.

Theorem 2 If the labeling procedure returns FAILURE,
there is no solution to the strong clustering problem. If,
on the other hand, the procedure returns SUCCESS, S is a
solution to the problem.

To turn S into a solution to the decision version of the
original clustering problem, we calculate the l-values of the
nodes in S. This can be done by running a single source
longest path algorithm on S [22] (according to the definition
of l-values). After the l-values are determined, we then
retime S according to the following retiming:

if vis a PI or PO

0
r(v) = { rz_value of v in S-I -1 otherwise
¢

Let S, denote the retimed circuit. We have the following
result:

Theorem 3 If the labeling procedure returns FAILURE,
there is no clustered circust with a clock period of . On
the other hand, if the procedure returns SUCCESS, Sy has
a clock period less than ¢ + K, where K is the mazimum of
the gate delays and D,

For the unit delay model, where D = 1, and delay of
each gate is zero {15], we have that the clock period of S» is
less than ¢ + 1, which implies the clock period is less than
or equal to ¢, since ¢ is an integer. Thus,

Corollary 1 For the unit delay model, we further have that
S, has a clock period less than or equal to ¢ if the labeling
procedure returns SUCCESS.

For the clustered circuit in Fig. 7(a), we retime all copies
of node b by a value of 1 to obtain the clustered circuit in
Fig. 7(b), which has a clock period of 2.

4.3 Time complexity

To determine the time complexity of the labeling pro-
cedure, we first determine the number of iterations in the
labeling procedure. For this, we modify the labeling proce-
dure by setting the initial lower bound for each-node to be
its l-value in N, since the label is obviously larger than or
equal to the l-value. If the label of a node is finite, there are
at most n — 1 edges that cross cluster boundaries on a path
with a weight equal to the label. As a result, the label is at
most (n —1)D larger than the initial l.value. Each iteration
increases at least one of the lower bounds by at least one,
for otherwise the variable changed is FALSE in the whole
iteration and the labeling procedure terminates with SUC-
CESS. After at most n{n — 1)}D iterations, all lower bounds
must have reachéd their maximum possible values if they
are finite. Thus, we can set B to be n(n — 1)D + 1 in the
labeling’ procedure.” If the labeling procedure does not re-
turn after n(n —1).D + 1 iterations, we know at léast one of

the nodés has an infinite label value, and simply stop the
procedure by returning FAILURE.

For a given &, the l-values of the nodes in N can
bé determined in time O(nm) using Beéllman-Ford algo-
rithm, and the all-pairs matrix A can be calculated in time
O(n?log n+nm) [22], where n and m denote the number of
nodes and the number of edges in IV, respectively. In proce-
dure TIGHTENBOUND which takes O((n -+ m)log#n) time is
called at most B times for each node. Hence the time cost of
the labeling procedure is O(n*mDlogn) in the worst case.
Qur experiments suggest- that the worst-case scenario is un-
likely to o¢cur in practice. We also have several methods
to improve the running time, which are-omitted here due
to space limitation.

4.4 Cluster reduction

In the previous discussion, we assume each cluster has
one output. If this assumption is relaxed, a post-processing

step can be added to reduce the number of clusters, without

increasing the l-values of the POs. For this, techniques
similar to those in [i4] can be used. For example, if the
label of a node v is. equal to the l-value a copy of the node in
the clustered circuit, the entire cluster at v can be removed,
and replaced by the copy. As an example, for the circuit in
Fig. 7(a), the I-valnes of node b in both the cluster at node
& and the cluster at node c are 1, the same as the label of &.
As a result, we remove the cluster.at node.b and replace it
with the b inthe cluster at a (or b). The resulting clustering
solution is shown in Fig. 8.

Several techniques were proposed to reduce rephcanon
for combinational circuits in [14]. Similar ideas apply here
except that I-values are used in place of combmatmnal path
delays.

5 Experlmental results

In this section, we describe our experiments, and sum-
marize the results. S 4

The test examples are from the sequential circuits in the
ISCAS 89 suite. For each circuit, we ran our algorithm
with three different area bounds, M=5, 10 and 15. The
results obtained are summarized in Table 2, where column
dopt lists the minimum clock period, #g¢ lists the number

126

Figure 8: Clustered circuit after cluster reduction.

of gates in the original and clustered circuits, and #c lists
the number of clusters in each clustered circuit. The final
column lists the average running time of our program, for
the three area bounds on a SPARC 5.

We set gate area and delay to be one unit and inter-
cluster delay to be two units in our experiments. Thus, the
clock period of each clustered circuit is at most one unit
away from optimal. As the cluster size increases, there is
more freedom in assigning gates 10 clusters. From the table
it is clear that our algorithm can automatically detect and
utilize this freedom, to produce clustermg solutions with
decreasing clock periods.

When the area bound M = 15, the optimal clock period
obtained for the clustered circuit is very close to the optimal
clock period of the original cixcuit. An area bound of 15 is
still quite small compared to the size of the circuit. This
clearly indicates the effectiveness of our algorithm.

6 Conclusions

Circuit ¢lustering is an important step in the design of
VLSI circuits. The solution formed at this step :greatly
influences the quality of the final design. We have developed
a clustering algorithm for sequential circuits that combines
retiming with clustering, and generates a clustering solution
without breaking the circuit. The solution obtained has
optimal clock period for the unit delay model, and provably
close to optimal clock period for the general delay model.

We are currently working to further improve the algo-
rithm by reducing the running time and the replicated logic.
We are also looking into the clustering problem with pin
count constraint.

Another direction for further research concerns classical
circuit partitioning. If the effect on the clock period of
the circnit is not taken into account during partitioning, a
critical path may be cut a large number of times. We are
investigating ways to balance clock period and cutsize.

References

[1] N.Sherwani, Algorithms for VLST Physical Design Au-
tomation. Kluwer Academic Publishv_ars, 1995.)

f2] C. J. Alpert and A. B. Kahng, “Recent directions in
netlist . partitioning: A survey,” in INTEGRATION,
the VLSI Journal, pp. 19:1-81, 1995,

[3] C. 1. Alpert and S.-Z. Yao, “Spectral partitioning: the
more eigenvectors the better,” in ACM/IEEE Design
Automation Conf.”(DAC), pp. 195-200, 1995,

[4]

(5]

(6]

[7]

[8]

[0l

[10]

(11]

(12]

(13]

test circuit M=5 M=10 M=15 average
name | Gopt | #8 || bopr | #8 | #C || dopr | #& | #c || dopr | #g | #c || time m’s”
5208.1 10 104 13 107 22 11 109 12 11 107 8 00°01”
s349 14 161 20 161 33 18 162 17 16 163 12 00°18”
s444 7 181 10 182 39 9 181 19 8 190 14 00°06”
s635 66 286 92 289 59 79 286 29 74 286 20 00°20”
s713 74 393 104 407 83 90 396 41 84 393 27 01’34”
s820 10 289 15 289 59 13 289 30 13 289 20 00°31”
s938 16 446 22 452 93 18 459 47 18 454 31 00°21”
s1196 24 529 34 536 | 109 29 547 56 28 531 37 00°17°
51238 22 508 30 523 | 107 27 545 55 25 530 36 0015
51488 16 653 22 677 | 138 19 692 72 18 728 51 01°17"
s1494 16 647 22 682 | 142 19 670 70 18 705 50 01'25”
s1512 23 780 32 798 | 161 28 810 82 26 891 64 09°14”
53330 14 | 1789 20 | 1805 | 363 17 | 2050 | 211 16 | 2040 | 141 04°25”
s5378 21} 2779 31 | 2838 | 573 27 | 3130 | 319 25 | 2932 | 200 31°31”

Table 1: Experimental results.
P. K. Chan, M. D. F. Schlag, and J. Y. Zien, “Spec- [14] R. Murgai, R. Brayton, and A. Sangiovanni-

tral based multi-way FPGA partitioning,” in Inter-
national Symposium on Field- Programmable Gate Ar-
rays, pp. 133-139, 1995.

D. Cheng, C.-C. Lin, and M. Marek-Sadowska, “Cir-
cuit partitioning with logic perturbation,” in Intl
Conf. on Computer-Aided Design (ICCAD), pp. 650~
655, 1995,

L.-T. Liu, M.-T. Kuo, C.-K. Cheng, and T. Hu, “A
replication cut for two-way partitioning,” JEEE Trans.
on Computer-Aided Design, vol. 14, pp. 623-630, 1995.

S. Dutt and W. Deng, “A probability-based approach
to VLSI circuit partitioning,” in ACM/IEEE Design
Automation Conf. (DAC), pp. 100-105, 1996.

L. W. Hagen, D. J.-H. Huang, and A. B. Kahng, “On
implementation choices for iterative improvement par-
titioning algorithms,” in Furopean Design Automation
Conference, pp. 144-149, 1995,

L. J. Hwang and A. E. Gamal, “Min-cut replication
in partitioned networks,” IEEE Trans. on Computer-
Aided Design, vol. 14, pp. 96-106, 1995.

C. Kring and A. Newton, “A cell-replicating approach
to min-cut-based circuit partitioning,” in Intl. Conf.
on Computer-Aided Design (ICCAD), pp. 2-5, 1991.

K. Roy-Neogi and C. Sechen, “Partitioning with per-
formance optimization,” in International Symposium
on Field-Programmable Gate Arrays, pp. 146-152,
1995.

M. Shih and E. S. Kuh, “Circuit partitioning under
capacity and I/O constraints,” in Custom Integrated
Circuits Conference, pp. 659-662, 1994,

H. Yang and D. Wong, “New algorithms for min-cut
replication in partitioned circuits,” in Intl. Conf. on
Computer-Aided Design (ICCAD), pp. 216-223, 1995.

127

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

Vincentelli, “On clustering for minimum delay/area,”
in Intl. Conf. on Computer-Aided Design (ICCAD),
pp. 6-9, 1991.

E. Lawler, K. Levitt, and J. Turner, “Module clus-

tering to minimize delay ir- digital networks,” IEEE
Trans. on Computers, vol. 18, pp. 47-57, 1969.

R. Rajaraman and D. Wong, “Optimal clustering for
delay minimization,” in ACM/IEEE Design Automa-
tion Conf. (DAC), pp. 309-314, 1993.

C. E. Leiserson and J. B. Saxe, “Retiming synchronous
circuitry,” Algorithmica, vol. 6, pp. 5-35, 1991.

L.-T. Liu, M. Shih, N. Chou, C.-K. Cheng, and W. Ku,
“Performance-driven partitioning using retiming and
replication,” in Intl. Conf. on Computer-Aided Design
(ICCAD), pp. 296-299, 1993,

L.-T. Liu, M.-T. Kuo, C.-K. Cheng, and T. Hu,
“Performance-driven partitioning using a replication
graph approach,” in ACM/IEEE Design Automation
Conf. (DAC), pp. 206-210, 1995.

P. Pan and C. L. Liu, “Optimal clock period
FPGA technology mapping for sequential circuits,”
in ACM/IEEE Design Automation Conf. (DAC),
pp. 720-725, 1996.

P. Pan, “Continuous retiming: algorithms and appli-
cations,” in Intl. Conf. on Computer Design (ICCD),
1997, (to appear).

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intro-
duction to Algorithms. New York: McGraw-Hill Book
Company, 1990.

